On-Demand Capture and Release of Organic Droplets Using Surfactant-Doped Polypyrrole Surfaces.

نویسندگان

  • Wei Xu
  • Anthony Palumbo
  • Jian Xu
  • Youhua Jiang
  • Chang-Hwan Choi
  • Eui-Hyeok Yang
چکیده

In this paper, we demonstrate the controlled capture and release of dichloromethane (DCM) droplets on dodecylbenzenesulfonate-doped polypyrrole (PPy(DBS)) surfaces in an aqueous environment. The droplets captured on oxidized PPy(DBS) surfaces were released on-demand via a reduction process at ∼0.9 V, with controlled release time and droplet morphology. The release time of an entire droplet (2 ± 1 μL) was proportional to the thickness of the PPy(DBS) coating, increasing from 11.5 to 26.3 s for thicknesses ranging from 0.6 to 5.1 μm. The droplet-release time was also affected by the redox voltages, and among the tested redox voltages, the fastest release was achieved at -0.9/0.1 V. The PPy(DBS) surfaces with larger thicknesses were more durable for the droplet capture and release. The droplets were more rapidly released from PPy(DBS) surfaces with increased surface roughness ratios, such as 6.0 s on a micropillared surface and 10.3 s on a meshed surface, as compared to 14.6 s on the 1.8 μm thick PPy(DBS) surfaces coated on frosted-glass substrates (i.e., with random microstructures). The release of a single droplet was achieved by increasing the underwater oleophobicity of PPy(DBS) surface via O2 plasma treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Situ Control of Underwater-Pinning of Organic Droplets on a Surfactant-Doped Conjugated Polymer Surface.

Controlling the pinning of organic droplets on solid surfaces is of fundamental and practical interest in the field of material science and engineering, which has numerous applications such as surface cleaning, water treatment, and microfluidics. Here, a rapid in situ control of pinning and actuation of organic droplets is demonstrated on dodecylbenzenesulfonate-doped polypyrrole (PPy(DBS)) sur...

متن کامل

Doping Polypyrrole Films with 4-N-Pentylphenylboronic Acid to Enhance Affinity towards Bacteria and Dopamine

Here we demonstrate the use of a functional dopant as a fast and simple way to tune the chemical affinity and selectivity of polypyrrole films. More specifically, a boronic-functionalised dopant, 4-N-Pentylphenylboronic Acid (PBA), was used to provide to polypyrrole films with enhanced affinity towards diols. In order to prove the proposed concept, two model systems were explored: (i) the captu...

متن کامل

High-Purity Isolation and Recovery of Circulating Tumor Cells using Conducting Polymer-deposited Microfluidic Device

We have developed a conductive nano-roughened microfluidic device and demonstrated its use as an electrically modulated capture and release system for studying rare circulating tumor cells (CTCs). The microchannel surfaces were covalently decorated with epithelial cancer-specific anti-EpCAM antibody by electrochemical deposition of biotin-doped polypyrrole (Ppy), followed by the assembly of str...

متن کامل

Tunable wetting mechanism of polypyrrole surfaces and low-voltage droplet manipulation via redox.

This paper presents the experimental results and analyses on a controlled manipulation of liquid droplets upon local reduction and oxidation (redox) of a smart polymer-dodecylbenzenesulfonate doped polypyrrole (PPy(DBS)). The electrochemically tunable wetting property of PPy(DBS) permitted liquid droplet manipulation at very low voltages (-0.9 to 0.6 V). A dichloromethane (DCM) droplet was flat...

متن کامل

Electrooxidation of methanol on doped polypyrrole films in acidic media

Electrooxidation of methanol was realised on platinum and perchlorate anion doped polypyrrole film electrodes in acidic media. A systematic kinetic investigation was performed and optimum experimental conditions for the preparation of the electrocatalytic system were determined. The presence of ClO4 − anions was confirmed by XPS analysis of the doped polymer matrix. © 2001 Elsevier Science B.V....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 9 27  شماره 

صفحات  -

تاریخ انتشار 2017